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This study explores the diverse applications, challenges, and future prospects of employing vision 
transformers in various material science domains, including biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, electronics and photonic materials, 
materials synthesis, polymers, and nanomaterials. In the realm of biomaterials, the application of 
vision transformers has signi�cantly improved our understanding of biological interactions, leading 
to the development of innovative medical implants and drug delivery systems. In ceramic materials, 
these transformers have revolutionized design and production processes, ensuring higher durability 
and e�ciency. Likewise, in composite materials, they have enabled the creation of lightweight yet 
robust structures, transforming industries from aerospace to automotive. Energy materials research 
has greatly bene�ted from vision transformers, facilitating the discovery of novel materials for energy 
storage and conversion. Additionally, the study of magnetic materials has been transformed by their 
ability to analyze intricate magnetic patterns, aiding in the development of advanced data storage 
technologies. In electronics and photonic materials, vision transformers have accelerated the 
evolution of compact and high-performance devices. Integrating vision transformers poses 
challenges in managing vast and intricate datasets, ensuring model interpretability, and addressing 
ethical concerns related to data privacy and bias. As vision transformers continue to advance, their 
application in materials synthesis, polymers, and nanomaterials is anticipated to yield 
groundbreaking discoveries. This study highlights the way forward, underscoring the importance of 
collaborative e�orts between computer scientists and materials researchers to unlock the full 
potential of vision transformers in reshaping the landscape of material science.
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Figure 1. Co-occurrence analysis of the keywords in literature.

Figure 2. Co-authorship analysis in transformer for medical image 
analysis.

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Figure 3. Network architecture of ViT-V-Net proposed by Chen et al. 
2021 [1]

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

Table 1. Applications and challenges of vision transformers in biomaterials.

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].

S/N. Biomaterial 
Type

Vision Transformer Applications Challenges in Vision Transformer 
Implementation

1 Bioceramics Example: Analyzing bioceramic coatings for 
orthopedic implants.  
- Studying material composition and predicting 
behavior.  
- Identifying structural properties for enhanced 
performance.

Example: Limited labeled data for speci�c 
bioceramic compositions.  
- Standardizing imaging techniques for 
accurate analysis.  
- Integrating vision transformers into 
complex manufacturing processes.

2 Biopolymers Example: Studying biopolymer-based drug delivery 
systems.  
- Analyzing polymer morphology for controlled 
drug release.  
- Predicting biodegradation patterns for sustainable 
applications.

Example: Complex interactions between 
polymers and drugs.  
- Variability in natural polymer structures.  
- Real-time analysis for dynamic drug 
delivery systems.

3 Composite 
Biomaterials

Example: Investigating composite materials for 
dental applications.  
- Identifying material interfaces and bonding 
properties.  
- Predicting mechanical properties for optimal 
performance.

Example: Integrating data from diverse 
imaging modalities.  
- Limited understanding of long-term 
composite behavior. 
- Developing algorithms for real-time 
composite analysis.

4 Biosensors Example: Developing biosensors for glucose 
monitoring.  
- Analyzing sensor surface for e�ective biomolecule 
binding.  
- Predicting sensor sensitivity and selectivity for 
accurate detection.

Example: Ensuring reliability of sensor 
readings under varying conditions.  
- Noise reduction in sensor data for precise 
measurements.  
- Integrating vision transformers with 
biosensor technologies seamlessly.

5 Biodegradable 
Metals

Example: Studying biodegradable metal stents.  -
Analyzing corrosion behavior in physiological 
environments.  
- Predicting mechanical integrity during 
degradation.

Example: Limited availability of in vivo 
degradation data.  
- Understanding complex interactions with 
biological systems.  
- Developing accurate simulation models for 
degradation behavior.

6 Hydrogels Example: Developing hydrogel-based tissue 
engineering sca�olds. 
- Studying hydrogel structure for cellular 

attachment and growth.  

Example: Controlling hydrogel swelling and 
degradation rates.  
- Real-time monitoring of hydrogel properties 
in dynamic physiological environments.  
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].

S/N. Ceramic Material 
Type

Applications of ViTs Challenges

1 Porcelain Ceramics 1. Quality Control in Production 1. Accurate Glaze �ickness Measurement
2. Surface Defect Detection 2. Detection of Microscopic Cracks
3. Ceramic Tile Inspection 3. Variation in Surface Texture Analysis

2 Alumina Ceramics 1. Semiconductor Manufacturing 1. Precise Dimension Measurement
2. Wear-Resistant Components 2. Surface Roughness Analysis
3. High-Temperature Furnace 
Insulation

3. Contaminant Detection

3 Zirconia Ceramics 1. Dental Prosthetics 1. Color and Transparency Analysis
2. Aerospace Components3. Biomedical 
Implants

2. Detection of Grain Boundaries

3. Structural Defect Identi�cation
4 Silicon Carbide 

Ceramics
1. Automotive Components 1. Microcrack Detection2. Crystallographic 

Structure Analysis3. Surface Contamination 
Identi�cation

2. Armor Inserts
3. High-Temperature Electronics

Table 2. Role and challenges of vision transformers in ceramic materials.
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].

5 Ferrite Ceramics 1. Magnetic Components in Electronics 1. Detection of Magnetic Anomalies
2. Microwave Devices 2. Measurement of Magnetic Properties
3. Inductors and Transformers 3. Impurity Identi�cation

6 Magnesium Oxide 
Ceramics

1. Electrical Insulation 1. Purity Analysis
2. Refractory Linings 2. �ermal Conductivity Measurement
3. Catalyst Supports 3. Surface Defect Identi�cation

7 Carbon-Carbon 
Composites

1. Aerospace �ermal Protection 
Systems

1. Delamination Detection

2. Brake Disks 2. Microstructure Analysis
3. High-Temperature Structural 
Components

3. Surface Defect Characterization
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].

S/N. Energy Material Roles of Vision Transformers Challenges
1 Solar Cells - Detecting and classifying defects in solar 

panels. - Enabling predictive maintenance for 
solar power plants. - Assessing solar resources 
through satellite imagery analysis.

- Managing large-scale satellite imagery datasets. -
Ensuring real-time analysis for timely 
maintenance. - Addressing environmental factors 
such as cloud cover a�ecting image analysis.

2 Battery 
Materials

- Analyzing microstructures to enhance battery 
performance. - Ensuring quality control in 
battery manufacturing processes. - Predicting 
battery degradation and remaining lifespan.

- Interpreting complex microstructures 
accurately. - Limited availability of high-quality 
labeled data for training models. - Addressing 
privacy concerns in manufacturing facilities.

3 Wind Energy - Monitoring and inspecting wind turbine 
blades. - Analyzing wind patterns for energy 
output prediction. - Detecting and preventing 
wildlife collisions.

- Maintaining image clarity in adverse weather 
conditions. - Integrating vision systems in 
dynamic environments. - Ensuring safety for 
technicians and wildlife during inspections.

4 Nuclear Energy - Inspecting nuclear reactors for safety. -
Detecting and analyzing radiation leaks. -
Automating routine maintenance tasks.

- Ensuring accurate a nd reliable radiation detection. 
- Adhering to strict safety protocols during inspections. 
- Addressing ethical concerns related to nuclear energy. 

5 Hydropower - Monitoring dam structural integrity. -
Predicting water �ow for energy optimization. 
- Assessing environmental impact through 
aquatic life monitoring.

- Managing varying water levels a�ecting image 
quality. - Developing algorithms for real-time �ow 
prediction. - Balancing energy optimization with 
environmental conservation.

6 Photovoltaic 
Materials

- Analyzing surface morphology for enhanced 
light absorption. - Identifying defects and 
impurities to improve e�ciency. - Predicting 
material behavior under di�erent conditions.

- Interpreting nanoscale features for material 
optimization. - Handling variations in material 
composition a�ecting imaging results. -
Integrating machine learning models with 
experimental research.

7 Carbon Capture 
and Storage 
(CCS)

- Monitoring facilities for leaks and structural 
integrity. - Analyzing geological formations for 
secure CO2 storage. - Automating gas sample 
analysis.

- Ensuring continuous and precise monitoring to 
prevent CO2 leaks. - Addressing security concerns 
related to underground storage sites. - Developing 
real-time gas composition analysis algorithms.

Table 3. Role and challenges of vision transformers in magnetic materials.
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].

8 Bioenergy - Analyzing biomass feedstock quality and 
composition. - Monitoring fermentation 
processes in biofuel production. - Automating 
bioenergy crop inspections.

- Identifying diverse biomass sources and their 
properties. - Ensuring consistency in fermentation 
processes. - Adapting vision systems to varying 
�eld conditions.
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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S/N. Nanomaterial 
Type

Roles of Vision Transformers Challenges

1 Nanoparticles 1. Characterization: Analyzing electron microscope 
images to determine size, shape, and surface 
properties.

1. Resolution: Achieving high-resolution 
images for accurate characterization.

2. Quality Control: Detecting defects and ensuring 
consistency in production.

2. Data Variability: Managing variations in 
imaging conditions a�ecting analysis.

2 Nanotubes 1. Structural Analysis: Identifying nanotube 
structures, including chirality and defects.

1. Complex Structures: Developing 
algorithms for analyzing complex multi-
walled nanotube structures.

2. Functionalization Monitoring: Observing changes 
in surface properties during functionalization.

2. Limited Training Data: Insu�cient labelled
data for nanotube-speci�c models.

3 Nanocomposites 1. Phase Distribution: Analyzing images to ensure 
uniform distribution of components.

1. Image Noise: Managing noise interference 
in microscopic images.

2. Performance Evaluation: Evaluating mechanical, 
electrical, or thermal properties through images.

2. Integration Challenges: Integrating Vision 
Transformers with other analytical 
techniques.

4 Nanowires 1. Composition Analysis: Identifying elemental 
composition based on images.

1. Sample Artifacts: Addressing artifacts 
introduced during sample preparation.

2. Integration in Devices: Assisting in precise 
integration into various devices.

2. Real-time Analysis: Developing fast real-
time image processing algorithms.

5 Quantum Dots 1. Size and Shape Analysis: Analyzing images for 
uniformity in size and shape.

1. Fluorescence Variability: Managing 
variations in quantum dot �uorescence.

2. Bioimaging Support: Enhancing analysis for 
bioimaging applications.

2. Biological Context: Incorporating 
nanomaterial analysis in complex biological 
systems.

6 Nanorods 1. Optical Properties: Understanding optical 
properties for sensor and imaging applications.

1. Interparticle Interactions: Analyzing 
interactions in clustered nanorods.

2. Surface Modi�cation Monitoring: Observing 
surface modi�cation processes.

2. Sensitivity: Ensuring detection of subtle 
surface changes.

Table 4. Roles and challenges of vision transformers in nanomaterial research.

Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.

Disclosure statement 
No potential con�ict of interest was reported by the author.

Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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In the dynamic realm of material science, the fusion of 
cutting-edge technologies has paved the way for innovative 
research methodologies, with Vision Transformers (ViTs) 
emerging as a transformative force [1-4]. �ese ViTs, 
integrating deep learning and computer vision techniques, 
promise to revolutionize the exploration, analysis, and 
comprehension of diverse materials [3,5]. �is research delves 
into the profound impact of ViTs within material science, 
focusing on specialized areas such as biomaterials, ceramic 
materials, composite materials, energy materials, magnetic 
materials, electronics, and photonic materials, materials 
synthesis, polymers, and nanomaterials. Traditionally, material 
studies have been propelled by experimental techniques and 
theoretical models, leading to signi�cant discoveries and 
technological advancements. However, the digital era has 
ushered in a new paradigm, where the convergence of arti�cial 
intelligence and material science has unlocked unparalleled 
opportunities [6-10]. Vision Transformers, originally designed 
for image recognition tasks, have showcased exceptional 
capabilities across various domains, prompting researchers to 
explore their potential in material science [1,4].

 �e intricate and varied nature of materials demands 
advanced tools for characterization, analysis, and prediction. 

ViTs, with their ability to decipher intricate patterns and 
relationships within visual data, o�er a fresh approach to tackle 
the challenges encountered in material science [1,3]. By 
harnessing the potential of ViTs, researchers can delve deeper 
into the microstructures, compositions, and behaviors of 
materials across di�erent domains. �is deeper understanding 
can expedite the development of innovative materials, enhance 
existing technologies, and pave the way for novel applications 
(Figure 1). �is research aims to present a comprehensive 
overview of the applications, challenges, and future prospects 
of employing Vision Transformers in various sub�elds of 
material science. Speci�cally, the research explores how ViTs 
are being utilized in biomaterials, ceramic materials, 
composite materials, energy materials, magnetic materials, 
electronics and photonic materials, materials synthesis, 
polymers, and nanomaterials. By assessing the current state of 
research, analyzing challenges, and envisioning future 
trajectories, this paper contributes to the growing body of 
knowledge at the intersection of arti�cial intelligence and 
material science. As this research delves into the multifaceted 
applications of ViTs in material science, it aims to unravel the 
complexities of materials at a microscopic level, opening new 
avenues for exploration and innovation in this dynamic and 
vital scienti�c discipline.

Polymeric biomaterials:

Polymeric biomaterials, encompassing polymers and 
copolymers, �nd widespread use in drug delivery and tissue 
engineering. ViTs can scrutinize scanning electron microscopy 
(SEM) images of polymeric biomaterials, facilitating the 
identi�cation of features like polymer chains, cross-linking 
patterns, and porosity. �is information is instrumental in 
re�ning the polymerization process and enhancing the 
mechanical and biological attributes of the biomaterial [16,18].

Vision Transformers in Biomaterials
Biomaterials represent engineered substances designed for 
interaction with biological systems in various medical 
applications, including tissue engineering, drug delivery, and 
medical devices [11-13]. Recent advancements in the �eld of 
biomaterials have been greatly in�uenced by the incorporation 
of arti�cial intelligence (AI) techniques [14,15]. An innovative 
approach in this regard involves the utilization of Vision 
Transformers (ViTs), a transformational technology rooted in 
the transformer architecture widely known for its remarkable 
performance in computer vision tasks. When applied to 
biomaterials, ViTs o�er a distinct perspective, enabling e�cient 
analysis, characterization, and design of a wide array of 
biomaterial types [16-20].  In contrast to conventional 
convolutional neural networks (CNNs), which process images 
in rigid grids, ViTs adopt a perspective of viewing images as 
sequences of patches. �is sequence-centric approach empowers 
ViTs to grasp long-range dependencies within images, rendering 
them highly e�ective for tackling tasks involving intricate 
patterns and vast datasets [18,20]. Table 1 shows the applications 
and challenges of vision transformers in biomaterials.

Utilizing vision transformers for biomaterial 
characterization
Accurate characterization of biomaterials is pivotal for 
comprehending their properties and conduct in biological 
settings. ViTs present a robust tool for this purpose. By 
inputting microscopic images of biomaterial samples, ViTs can 
adeptly learn to identify and categorize various structures, such 
as nano�bers, pores, and surface textures. �is capability holds 
particular signi�cance in biomaterials research, where subtle 
structural di�erences can exert a substantial in�uence on the 
material's performance [19].

orientations, grain boundaries, and defects. �is analysis is 
pivotal in understanding the mechanical strength and 
biocompatibility of the material, thereby leading to the 
development of more durable and e�cacious implants [17].

Metallic biomaterials:

Metallic biomaterials, including titanium alloys used in 
orthopaedic implants and medical devices, bene�t from ViTs' 
capabilities. �ese technologies can process images of metal 
surfaces obtained through techniques like atomic force 
microscopy (AFM) to identify surface roughness, corrosion 
patterns, and wear characteristics. �is information is vital in 
the design of implants with enhanced wear resistance and 
biocompatibility [18,19].

Enhancing biomaterial formulations with vision 
transformers
ViTs also play a pivotal role in optimizing biomaterial formulations 
through the analysis of intricate datasets related to material 
composition, processing parameters, and performance metrics.

Vision transformers in biomaterials simulation and 
prediction
In addition to experimental data, ViTs can leverage 
computational simulations and predictive modeling to expedite 
biomaterials research [21-23].

Molecular dynamics simulations:

Molecular dynamics (MD) simulations o�er insights into 
biomolecular interactions at the atomic level. ViTs can 
scrutinize simulation trajectories and visualize molecular 
structures, assisting researchers in understanding how 
biomaterials interact with biological molecules. �is knowledge 
is invaluable for designing drug delivery carriers and studying 
protein adsorption on biomaterial surfaces [24].

Property prediction:

ViTs possess the ability to predict various biomaterial 
properties, encompassing mechanical strength, biodegradation 
rate, and thermal conductivity, based on microstructural 
features. �rough training on a diverse dataset of biomaterial 
images and corresponding properties, ViTs can generalize their 
learning to predict the properties of unseen biomaterials. �is 
predictive capability expedites the material screening processes, 
enabling researchers to concentrate on the most promising 
candidates for speci�c applications [21,22].

Vision transformers for personalized biomaterial 
design
�e concept of personalized medicine aims to tailor medical 
treatments to the unique characteristics of individual patients. 
In the context of biomaterials, ViTs contribute to the realization 
of personalized therapies and implants.

Patient-speci�c implants:

ViTs can process medical imaging data, such as computed 
tomography (CT) scans, to construct detailed 3D models of 
anatomical structures. By integrating these models with 
biomaterial design, ViTs facilitate the production of 
patient-speci�c implants customized to the anatomy of 
individual patients. �is personalized approach enhances 
implant �t, reduces recovery time, and minimizes the risk of 
complications [25].

Drug response prediction:

ViTs can analyze cellular images to predict the responses of 
individual cells or patient-derived cell cultures to speci�c 
biomaterials or drug formulations. By correlating cellular 
morphology and behavior with treatment outcomes, ViTs 
enable the identi�cation of biomaterials that are most e�ective 
for particular patient populations. �is information proves 
invaluable in the design of personalized drug delivery systems 
and tissue engineering constructs [22,24].

Vision Transformers in Ceramic Materials
Ceramic materials have been an integral part of human 
civilization for millennia, �nding applications in diverse �elds, 
including construction, electronics, healthcare, and aerospace 
[24-26]. In recent years, the fusion of ceramics with arti�cial 
intelligence has led to groundbreaking advancements in 
material science and engineering [27,28]. Among the most 

revolutionary technologies in arti�cial intelligence is Vision 
Transformers (ViTs). ViTs, a category of deep learning models, 
have demonstrated exceptional performance in computer 
vision tasks, particularly in image recognition and analysis. 
Table 2. Shows the role and challenges of vision transformers in 
ceramic materials [29].

Applications of vision transformers in ceramic 
materials

Defect detection and quality control:

ViTs can automate the inspection process of ceramic materials. 
By training ViTs on extensive datasets of images showcasing 
various defects and imperfections in ceramics, the model can 
accurately identify and classify defects, such as cracks, chips, 
and impurities. �is application ensures that only high-quality 
ceramic products reach the market, thereby enhancing the 
overall reliability and safety of ceramic materials in various 
applications (Table 1) [30].

Material composition analysis:

Ceramic materials o�en involve complex compositions 
comprising various elements and phases. ViTs can analyze the 
microstructure of ceramics at a granular level, identifying the 
composition of di�erent phases and elements. �is capability is 
invaluable in research and development, enabling scientists and 
engineers to optimize ceramic formulations for speci�c 
properties, such as strength, conductivity, or thermal resistance 
[29,30].

Predictive modelling and simulation:

ViTs can create predictive models for the behaviour of ceramic 
materials under di�erent conditions. By training ViTs on data 
from experiments and simulations, researchers can develop 
accurate models predicting properties like mechanical strength, 
thermal expansion, and electrical conductivity. �ese models 
are invaluable for designing advanced ceramic materials for 
cutting-edge applications in industries such as aerospace and 
electronics [31].

Process optimization:

Ceramic manufacturing processes are complex and o�en 
involve multiple stages such as mixing, moulding, sintering, and 
glazing. ViTs can analyze data from various stages of the 
manufacturing process to optimize parameters like 
temperature, pressure, and composition. �is optimization 
leads to increased e�ciency, reduced energy consumption, and 
minimized waste, making ceramic production more sustainable 
and environmentally friendly [32].

Vision transformers and different ceramic material 
types
Traditional ceramics:

Traditional ceramics, such as clay-based products, have a long 
history in pottery and construction. ViTs can improve the 
quality control processes in traditional ceramics manufacturing 

by accurately detecting imperfections in the �nal products. 
Additionally, ViTs can analyze the composition of raw 
materials, ensuring consistency and quality in the production of 
traditional ceramic items (Table 2) [33].

Refractory ceramics:

Refractory ceramics are engineered to withstand extreme 
temperatures and harsh conditions, making them ideal for 
applications in kilns, furnaces, and the aerospace industry. ViTs 
can assist in the development of refractory ceramics with 
enhanced thermal and mechanical properties. By analyzing the 
microstructure of refractory ceramics, ViTs can optimize the 
material composition, resulting in improved heat resistance and 
longer lifespans in high-temperature environments [34].

Advanced ceramics:

Advanced ceramics, including oxides, nitrides, and carbides, are 
tailored for specialized applications in electronics, cutting tools, 
and biomedical devices. ViTs play a pivotal role in the 
development of advanced ceramics with customized properties. 
�eir ability to analyze the crystal structure and grain 
boundaries of these materials enables researchers to design 
ceramics with superior electrical conductivity, hardness, and 
biocompatibility. ViTs also facilitate the detection of nanoscale 
defects in advanced ceramic components, ensuring the 
reliability of these critical components in various high-tech 
applications [30,32].

Bioceramics:

Bioceramics, such as hydroxyapatite and bioactive glasses, are 
used in medical implants and dental applications due to their 
biocompatibility and ability to integrate with natural tissues. 
ViTs can aid in the precise analysis of bioceramic surfaces and 
interfaces, ensuring the biocompatibility of implants and 
prosthetics. By detecting subtle surface irregularities or defects, 
ViTs contribute to the development of safer and more e�ective 
bioceramic materials for medical use [33].

Vision Transformers in Composite Material
Composite materials are engineered materials created by 
combining two or more constituent materials with markedly 
di�erent physical or chemical properties. �is fusion results in a 
material with characteristics distinct from its components. 
�ese versatile materials are widely used in various industries, 
including aerospace, automotive, construction, and electronics, 
due to their lightweight nature, impressive strength-to-weight 
ratio, and durability [29-34]. As technology advances, there is a 
growing demand for e�cient methods to design, analyze, and 
manufacture composite materials. In recent years, arti�cial 
intelligence (AI) and machine learning (ML) techniques, 
including computer vision, have emerged as powerful tools for 
enhancing the development and understanding of composite 
materials [35-37]. One of the innovative approaches in this 
domain is the application of Vision Transformers (ViTs), a type 
of deep learning architecture that has demonstrated remarkable 
success in image recognition tasks [38,39]. Composite materials 
comprise a matrix material that binds together reinforcements, 
resulting in materials with superior properties. �e matrix can 
be a polymer, metal, or ceramic, while reinforcements can be 
�bres, particles, or other forms. Common types of composite 
materials include:
Polymer matrix composites (PMCs)
PMCs consist of a polymer matrix reinforced with �bres like 
glass, carbon, or aramid. �ey are lightweight and exhibit 
excellent corrosion resistance, making them ideal for aerospace 
and automotive applications [38].
Metal matrix composites (MMCs)

MMCs involve a metal matrix reinforced with ceramic or metal 
�bres. �ey o�er high strength at elevated temperatures, 
rendering them suitable for aerospace and automotive 
components [39].
Ceramic matrix composites (CMCs)
CMCs consist of a ceramic matrix reinforced with ceramic �bres. 
�ey possess high-temperature resistance and are used in gas 
turbine engines, nuclear reactors, and aerospace applications [40].
The role of vision transformers in composite 
materials
Image-based characterization of composite materials

Characterizing composite materials o�en requires microscopic 
analysis to understand the distribution and orientation of �bres 

or particles within the matrix. Traditional image processing 
techniques have limitations in handling complex patterns and 
large datasets. ViTs, with their ability to capture intricate 
patterns in images, o�er a solution to these challenges [38,39].

Detection and classi�cation of defects

Detecting defects in composite materials is crucial for ensuring 
their structural integrity. ViTs can be trained to identify defects 
like voids, delaminations, or �bre misalignments in 
microscopic images, enabling rapid and accurate quality control 
during manufacturing [39,40].

Predictive modelling and simulation

Predictive modelling of composite materials involves 
understanding their behaviour under various conditions. ViTs 
can assist in simulating material responses based on 
microstructural features, aiding engineers in optimizing 
composite designs for speci�c applications [40].

Applications of vision transformers in different types 
of composite materials
Polymer matrix composites (PMCs)

Fibre orientation analysis

ViTs can analyze microscopic images of PMC samples to 
determine the �ber orientation distribution within the matrix. 
�is information is vital for predicting material properties like 
sti�ness and strength, enabling manufacturers to tailor 
composites for speci�c applications [41].

Defect detection and repair

ViTs can automate the inspection process for PMC components, 
identifying defects in real time during manufacturing. 
Furthermore, ViTs can guide robotic systems in performing 
precision repairs on detected defects, enhancing the overall 
quality and reliability of PMC products [42].

Metal matrix composites (MMCs)

Reinforcement distribution analysis

ViTs can analyze scanning electron microscopy (SEM) images 
of MMC samples to quantify the distribution of reinforcing 
particles. �is analysis helps researchers and engineers 
understand the relationship between particle distribution and 
material properties, facilitating the development of 
high-performance MMCs [41].

Fatigue analysis

ViTs can assist in analyzing microscopic images of MMC samples 
subjected to fatigue testing. By recognizing microstructural 
changes indicative of fatigue damage, ViTs can aid in 
understanding the material's fatigue behaviour, leading to the 
development of MMCs with improved fatigue resistance [43].

Ceramic matrix composites (CMCs)

Microstructure-based modelling

ViTs can analyze high-resolution images of CMC 
microstructures and extract valuable data for computational 
models. By integrating this data into �nite element simulations, 
engineers can accurately predict the thermal and mechanical 
behaviour of CMC components, enabling the design of CMCs 
for high-temperature applications [40,42].

Creep and thermal analysis

ViTs can be employed to analyze SEM images taken before and 
a�er high-temperature creep tests on CMC samples. �is 
analysis helps in understanding microstructural changes and 
deformation mechanisms, allowing researchers to optimize 
CMC compositions for enhanced creep resistance and thermal 
stability [43].

Vision Transformers in Energy Materials
�e convergence of arti�cial intelligence (AI) and material 
science has ushered in a new era of innovative solutions across 
diverse �elds, particularly in the realm of energy materials 
[40-42]. A signi�cant breakthrough in AI, speci�cally in the 
domain of computer vision, is the emergence of Vision 
Transformers (ViTs). �ese ViTs, a type of deep learning model, 
have demonstrated exceptional prowess in image recognition 
tasks [43-45]. �eir unique approach to images as sequences of 
tokens, as opposed to conventional patch-based processing, 
allows ViTs to discern intricate patterns and long-range 
relationships within images, rendering them highly e�ective for 
various visual tasks [44,45]. Table 3 shows the role and 
challenges of vision transformers in magnetic materials.

Role of vision transformers in energy materials 
research
Materials discovery and optimization

Energy materials research o�en involves delving into intricate 
material compositions to enhance energy storage, conversion, 
and e�ciency. ViTs signi�cantly expedite this process by 
analyzing extensive databases of material structures and 
properties. �eir ability to discern subtle patterns in materials 
expedites the discovery and optimization of novel materials for 
energy applications. By processing images of crystal structures, 
defects, and material compositions, ViTs assist scientists in 
pinpointing promising candidates for batteries, solar cells, and 
other energy devices [45].

Characterization of nanomaterials

Nanomaterials play a pivotal role in energy applications due to 
their unique properties at the nanoscale. ViTs aid in 
characterizing nanomaterials by analyzing high-resolution 
imaging data from techniques such as transmission electron 
microscopy (TEM) and scanning tunnelling microscopy 
(STM). By interpreting these images, ViTs help researchers 

comprehend the morphology, size, and surface features of 
nanoparticles. �is knowledge is instrumental in designing 
nanomaterials tailored for speci�c energy-related tasks, 
including catalysis and energy storage [46].

Monitoring and quality control

In the production of energy devices, ensuring the quality and 
consistency of materials is paramount. ViTs, equipped with 
machine vision capabilities, can monitor manufacturing 
processes and conduct real-time quality control. By analyzing 
images of materials during production, ViTs can identify 
defects, impurities, or inconsistencies that might a�ect the 
performance and durability of energy devices. �is application 
not only enhances the overall quality of energy materials but 
also reduces waste in the manufacturing process [47].

Predictive modeling and simulation

Predictive modelling is crucial for comprehending the 
behaviour of materials under diverse conditions. ViTs analyze 
images generated from simulations and experiments to provide 
insights into the structural changes and interactions within 
materials. By processing visual data, ViTs contribute to the 
development of precise computational models for predicting 
the performance of energy materials. �ese models are 
invaluable for researchers and engineers engaged in the design 
and optimization of energy devices such as fuel cells and 
supercapacitors [48].

Applications of vision transformers in various energy 
materials
Battery technologies

A. Electrode microstructure analysis

ViTs can scrutinize the microstructure of battery electrodes, 
encompassing parameters such as particle size, distribution, 
and connectivity. �is analysis aids in optimizing electrode 
designs for enhanced energy storage and faster 
charge-discharge rates. ViTs' capacity to process vast amounts of 
electrode microstructure images expedites the development of 
high-performance batteries for electric vehicles and renewable 
energy storage systems [46-48].

B. Solid-state batteries

Solid-state batteries, with their improved safety and energy 
density, present promising alternatives to traditional 
lithium-ion batteries. ViTs contribute to solid-state battery 
research by analyzing images of solid electrolyte materials and 
electrode interfaces. �ese analyses help researchers identify 
suitable materials and optimize interfaces for e�cient ion 
transport, culminating in the development of safer and more 
reliable solid-state battery technologies [49].

Solar cell technologies

A. �in-�lm solar cells

�in-�lm solar cells, prized for their lightweight and �exibility, 
�nd applications in wearable devices and building-integrated 
photovoltaics. ViTs assist in the analysis of thin-�lm materials 
such as organic polymers and perovskites by processing images of 
�lm morphology and composition. �is analysis guides 
researchers in optimizing fabrication processes, leading to the 
production of e�cient and cost-e�ective thin-�lm solar cells [50].

B. Multijunction solar cells

Multijunction solar cells, comprising multiple semiconductor 
layers, achieve high e�ciency by capturing a broader spectrum 
of sunlight. ViTs aid in characterizing each semiconductor layer 
by analyzing images obtained from techniques like scanning 
electron microscopy (SEM) and atomic force microscopy 
(AFM). By comprehending the morphology and quality of 
individual layers, researchers can design multijunction solar 
cells with improved e�ciency and stability, crucial for 
concentrated solar power and space applications [48,50].

Catalyst materials for fuel cells

Fuel cells, acting as electrochemical devices converting 
chemical energy into electrical energy, have applications 
ranging from stationary power generation to fuel cell vehicles. 
ViTs play a pivotal role in analyzing catalyst materials, including 
platinum group metals and metal oxides, used in fuel cells. By 
processing images of catalyst nanoparticles and their interactions 
with electrolytes, ViTs assist in optimizing catalyst designs for 
enhanced catalytic activity and durability. �is optimization is 
pivotal for advancing fuel cell technologies and promoting their 
widespread adoption as clean energy sources [49].

Supercapacitors and energy storage devices

A. Electrode nanostructure analysis

Supercapacitors, or ultracapacitors, store energy through 
electrostatic charge separation at the electrode-electrolyte 
interface. ViTs aid in analyzing the nanostructure of 
supercapacitor electrodes, including parameters like pore size, 
surface area, and electrode morphology. By optimizing these 
parameters based on ViTs' analyses, researchers can enhance 
the energy and power density of supercapacitors, rendering 
them suitable for high-performance energy storage applications 
in renewable energy systems and portable electronics [50].

B. Electrolyte characterization

�e choice of electrolyte profoundly in�uences the performance 
and stability of energy storage devices. ViTs can analyze images 
of electrolyte materials, encompassing ionic liquids and 
polymers, to assess their purity, composition, and homogeneity. 
�is analysis ensures the development of high-quality 
electrolytes, leading to improved energy storage device 
performance, lower internal resistance, and longer cycle life 
[48,49].

Vision Transformers in Electronics and Photonic 
Materials
Vision Transformers (ViTs) have emerged as potent deep 
learning models in the realm of computer vision, originally 
tailored for image classi�cation tasks [4,5]. �eir impact 
extends far beyond their initial design, demonstrating 
signi�cant potential across diverse �elds, including electronics 
and photonic materials research [5,9,10]. ViTs' distinctive 
ability to interpret images as sequences of tokens, thereby 
capturing intricate long-range relationships, has ushered in 
groundbreaking applications within material science [3,5].

ViTs in electronics and photonic materials
Material recognition and classi�cation:

ViTs play a pivotal role in the identi�cation and categorization 
of materials in electronics and photonic research. By processing 
images of materials such as electronic circuits or photonic 
devices, ViTs accurately classify them based on composition, 
structure, or other de�ning properties. �is capability expedites 
the work of researchers and engineers, aiding in the swi� 
identi�cation and categorization of diverse substances and their 
variations [50].

Material property prediction:

ViTs also excel in predicting various material properties like 
electrical conductivity, refractive index, or bandgap energy. 
�rough training ViTs on material images alongside their 
corresponding properties, researchers can create models 
capable of estimating these properties for new or unknown 
materials. �is predictive ability proves invaluable in material 
design, enabling scientists to explore novel materials tailored for 
speci�c electronic or photonic applications [48,49].

Image-based quality control:

ViTs are instrumental in automating quality control processes 
in electronics manufacturing. By analyzing images of electronic 
circuits, photonic devices, or material surfaces, ViTs identify 
defects, inconsistencies, or imperfections. �is automation 
enhances e�ciency, reduces costs, and elevates the overall 
reliability of electronic and photonic products [51].

Simulation and virtual prototyping:

In the domain of electronics and photonics, ViTs are applied in 
simulating and virtually prototyping circuits and devices. 
Processing images of circuit layouts or device designs, ViTs o�er 
insights into performance characteristics and signal 
propagation. �is information empowers engineers and 
researchers to optimize designs before physical prototypes are 
developed, saving time and resources in the development 
process [52].

Material discovery and exploration:

ViTs accelerate the discovery of new materials with unique 

electronic or photonic properties. By analyzing extensive 
datasets of material images, ViTs uncover patterns, correlations, 
and novel structures that might elude human researchers. �is 
data-driven approach expedites the discovery of 
groundbreaking materials, fostering innovation in various 
technological applications [51].

Vision Transformers in Materials Synthesis
�e fusion of arti�cial intelligence (AI) and machine learning 
techniques with materials synthesis has ushered in a new era of 
scienti�c and technological progress [46,47]. At the heart of this 
transformation lies the innovative application of Vision 
Transformers (ViTs) in deciphering complex material 
structures and properties. In the domain of organic materials, 
essential in electronics, energy, and healthcare, ViTs excel at 
comprehending intricate molecular con�gurations. By 
analyzing vast databases of organic compounds, ViTs unveil 
relationships between molecular structures and material 
characteristics, expediting the creation of tailored materials for 
�exible electronics, e�cient organic photovoltaics, and 
biocompatible polymers used in medical applications [48-50]. 
Inorganic materials, the backbone of aerospace engineering, 
renewable energy, and catalysis, also bene�t signi�cantly from 
ViTs' capabilities. ViTs dissect subtle structural nuances, 
enabling researchers to predict inorganic materials' behaviour 
under diverse conditions. �rough the analysis of crystal 
structures and electronic con�gurations, ViTs optimize 
synthesis parameters, foresee phase transitions, and design 
materials boasting superior mechanical, thermal, and electrical 
properties. �is pro�ciency extends to the development of 
high-strength lightweight alloys and the creation of e�cient 
catalysts for sustainable chemical processes [48].

 Nanomaterials, characterized by size-dependent 
properties, have reshaped �elds like medicine, electronics, and 
environmental science. ViTs have enhanced the synthesis and 
characterization of these materials by discerning intricate 
nanoscale patterns [49]. Utilizing ViTs, researchers can decode 
data from advanced imaging techniques such as Transmission 
Electron Microscopy (TEM) and Atomic Force Microscopy 
(AFM). ViTs aid in identifying nanoparticle morphologies, 
crystal structures, and surface properties, enabling precise 
control of nanoparticle synthesis for applications like targeted 
drug delivery, quantum dot-based electronics, and e�cient 
water puri�cation technologies [46-48].

 Furthermore, ViTs have a crucial role in optimizing 
composite materials, blending two or more distinct components 
to create synergistic properties. In aerospace engineering, ViTs 
assist in designing lightweight yet robust composites, ensuring 
structural integrity and improving fuel e�ciency. Similarly, in 
biomaterials, ViTs facilitate the development of biocompatible 
composites for medical implants, harmonizing mechanical 
strength with biological compatibility. �e marriage of ViTs 

with materials synthesis not only accelerates scienti�c discovery 
but also paves the way for groundbreaking innovations across 
diverse industries [51].

Vision Transformers in Polymers
Polymer materials, integral components of our daily lives, serve 
a wide range of purposes in �elds spanning from healthcare to 
electronics, shaping the contemporary industrial landscape and 
driving innovation. In the era of arti�cial intelligence (AI) and 
machine learning (ML), new horizons emerge for augmenting 
the comprehension, design, and production of polymer 
materials [51,52]. Among these cutting-edge AI techniques, 
Vision Transformers (ViTs) stand as a promising tool poised to 
revolutionize the exploration and application of polymer 
materials [53-55]. 

Material discovery and design:

ViTs expedite the swi� exploration of expansive chemical 
compound spaces, empowering researchers to unearth novel 
polymers tailored to speci�c properties. By training ViTs using 
images of molecular structures and their associated attributes, 
researchers can forecast material behaviour predicated on visual 
patterns. �is approach expedites the discovery of polymers 
attuned to applications such as lightweight composites, �exible 
electronics, and biodegradable materials [52].

Microstructure analysis:

Grasping the microstructure of polymers holds paramount 
signi�cance in predicting material characteristics. ViTs 
pro�ciently scrutinize microscopic images of polymer 
specimens, capturing nuanced features that might prove 
challenging for conventional image processing techniques. By 
recognizing patterns in the arrangement of polymer chains, 
ViTs contribute to characterizing crystallinity, defects, and 
morphological variations, thereby o�ering invaluable insights 
for material optimization [53].

Quality control and defect detection:

In the domain of polymer manufacturing, ensuring product 
quality assumes utmost importance. ViTs excel in quality 
control tasks by inspecting polymer surfaces for anomalies, 
irregularities, or contaminants. �rough training ViTs with 
images of both ideal and defective polymer samples, 
manufacturers can implement automated inspection systems, 
signi�cantly boosting production e�ciency and reducing 
wastage [51,52].

Predictive modelling and simulation:

ViTs play an instrumental role in predictive modelling by 
scrutinizing images obtained from simulations or experiments. 
By discerning the intricate associations between polymer 
structures and properties, ViTs aid in the formulation of precise 
predictive models. �ese models empower researchers to 
simulate polymer behaviour under diverse conditions, 
facilitating the design of materials with enhanced performance 
and durability [50].

Polymer recycling and sustainability:

In an era of growing environmental consciousness, polymer 
recycling and sustainable material development have ascended 
in importance. ViTs prove invaluable in the recognition and 

categorization of polymer materials in recycling facilities. 
Additionally, ViTs can evaluate images of recycled polymer 
blends, guiding the development of sustainable materials by 
unravelling the impact of various additives and processing 
techniques on material properties [52].

Biomedical applications:

Polymers occupy a pivotal role in biomedical applications, 
encompassing drug delivery systems and tissue engineering. 
ViTs contribute to the analysis of images related to biomaterials, 
enabling researchers to optimize polymer sca�olds for tissue 
regeneration. ViTs also facilitate the comprehension of the 
interplay between polymers and biological entities, fostering the 
development of biocompatible materials for medical devices 
[53].

Utilizing vision transformers (ViTs) for polymer 
morphology analysis
�e characteristics of polymers, such as crystallinity, grain size, 
and phase distribution, profoundly impact their properties. 
ViTs excel in analyzing microscopy images to delve into 
polymer morphology. For instance, in semi-crystalline 
polymers like polyethylene, ViTs accurately discern and 
quantify crystalline and amorphous regions. �is precision 
o�ers valuable insights into mechanical and thermal properties. 
Likewise, in polymer blends, ViTs di�erentiate between phases, 
aiding the development of tailored blends for speci�c 
applications [51,53].

Harnessing ViTs for polymer property prediction
Understanding and predicting polymer properties are crucial 
for customizing materials for speci�c uses. ViTs, with their 
capacity to discern intricate patterns in vast datasets, can 
predict properties like mechanical strength, thermal 
conductivity, and optical transparency. For example, ViTs 
trained on images of stressed polymer samples can predict 
mechanical properties based on deformation patterns, enabling 
swi� and precise assessments without physical tests. �is 
acceleration in the materials discovery process leads to the 
creation of innovative polymers for advanced applications [54].

Integrating ViTs into polymer processing monitoring
Polymer processing methods, such as extrusion and injection 
moulding, signi�cantly in�uence �nal material properties. 
Real-time monitoring of these processes is vital for ensuring 
product quality. ViTs incorporated into monitoring systems can 
analyze video feeds from processing lines. By identifying 
patterns and anomalies, ViTs facilitate early defect detection, 
ensuring only high-quality polymer products reach the market. 
�is real-time monitoring enhances e�ciency, reduces waste, 
and elevates overall production quality [55].

Automating polymer recycling with ViTs
Polymer recycling is pivotal in mitigating environmental 
impact. ViTs assist in automating sorting and recycling 
processes. By analyzing images of mixed polymer waste, ViTs 
e�ciently classify and sort materials. �is automation not only 
boosts recycling rates but also ensures recycled polymers meet 
quality standards. ViTs contribute to fostering a circular 
economy by promoting sustainable practices in polymer 
material usage [52,54].

Enhancing polymer nanocomposite development 
through ViTs
Polymer nanocomposites, where polymers are reinforced with 
nanoparticles, exhibit superior properties. ViTs play a crucial 
role in their development by analyzing images from 
transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM). ViTs identify nanoparticle 
dispersion, size, and orientation within the polymer matrix. 
�is in-depth analysis assists researchers in optimizing 
nanocomposite formulations for exceptional mechanical, 
electrical, and thermal properties, driving innovations in �elds 
such as electronics and aerospace [54].

bulk materials. ViTs can analyze high-resolution transmission 
electron microscopy (HRTEM) images of nanoparticles. By 
training ViTs on extensive HRTEM datasets, researchers can 
develop models adept at precisely identifying nanoparticle size, 
shape, and crystal structure. �is information is indispensable 
for tailoring nanoparticles for applications in drug delivery, 
imaging, and sensing [59].

Nanocomposites:

Nanocomposites, formed by integrating nanoscale materials 
into a matrix, �nd utility in lightweight materials, automotive 
components, and aerospace structures. ViTs can analyze 
scanning electron microscopy (SEM) images of nanocomposite 
surfaces. �rough semantic segmentation, ViTs di�erentiate 
nanoscale �ller particles from the matrix material, o�ering 
insights into nanoparticle dispersion and alignment within the 
composite. �is comprehension is pivotal for optimizing the 
mechanical, thermal, and electrical properties of 
nanocomposites [60].

Nanowires and nanotubes:

Nanowires and nanotubes boast exceptional electrical and 
thermal conductivity, making them ideal for nanoelectronics 
and energy storage devices. ViTs can process transmission 
electron microscopy (TEM) images of these materials, 
identifying crystallographic defects, stacking arrangements, 
and surface modi�cations. By analyzing these features, 
researchers can design nanowires and nanotubes with enhanced 
performance for applications in batteries, sensors, and �exible 
electronics [61].

Quantum dots:

Quantum dots, semiconductor nanoparticles with quantum 
mechanical properties, exhibit size-dependent optical and 
electronic behaviors. ViTs can analyze �uorescence microscopy 
images of quantum dots, extracting details about their size 
distribution, emission spectra, and surface chemistry. �is 
meticulous characterization is indispensable for developing 
quantum dot-based technologies, including displays, solar cells, 
and biological imaging probes [62].

Nanocatalysts:

Nanocatalysts, owing to their extensive surface area and unique 
surface reactivity, are pivotal in catalysis and environmental 
remediation. ViTs can analyze high-angle annular dark-�eld 
scanning transmission electron microscopy (HAADF-STEM) 
images of nanocatalysts, providing insights into particle size, 
shape, and composition. By correlating these structural features 
with catalytic activity, researchers can design e�cient 
nanocatalysts for applications in hydrogen production, 
pollutant degradation, and chemical synthesis [63].

Conclusion
�is study thoroughly explored the applications, obstacles, and 
prospects of employing Vision Transformers across various 
Material Science domains, including Biomaterials, Ceramic 
Materials, Composite Materials, Energy Materials, Magnetic 
Materials, Electronics and Photonic Materials, Materials 
Synthesis, Polymers, and Nanomaterials. Navigating through 
these diverse arenas has shed light on the transformative 

potential of Vision Transformers, o�ering a profound glimpse 
into the future of Material Science research and innovation. 
One of the standout �ndings from this investigation is the 
diverse array of applications that Vision Transformers o�er 
across di�erent material types. In the realm of Biomaterials, 
these AI-driven models assist in developing biocompatible 
materials, optimizing their properties for medical implants and 
tissue engineering. In Ceramic Materials, Vision Transformers 
aid in understanding material microstructures, enabling the 
design of advanced ceramics for various industrial applications. 
Composite Materials, crucial in aerospace and automotive 
industries, bene�t from AI algorithms that enhance the 
structural integrity and performance of these materials. 
Furthermore, in Energy Materials, Vision Transformers can 
signi�cantly enhance the e�ciency of solar cells and energy 
storage devices, paving the way for sustainable energy solutions.

 Nevertheless, challenges persist in the integration of Vision 
Transformers in Material Science. �e scarcity of high-quality 
labeled data, a perennial AI challenge, hampers the training of 
accurate models. Overcoming this hurdle requires collaborative 
e�orts between material scientists and data scientists to curate 
extensive datasets. Additionally, the interpretability of 
AI-driven models remains a concern, particularly in �elds 
where understanding material behavior is as crucial as the 
predictions themselves. Striking a balance between predictive 
power and interpretability is essential to ensure the trust and 
acceptance of these AI technologies in the scienti�c community. 
Despite these challenges, the future outlook for Vision 
Transformers in Material Science is exceptionally promising. 
Ongoing advancements in AI, especially in self-supervised 
learning and few-shot learning, hold the key to addressing the 
data scarcity issue. Collaborative initiatives involving research 
institutions, industry partners, and AI developers can lead to 
the creation of comprehensive material databases, fueling the 
development of robust Vision Transformer models. Moreover, 
incorporating domain-speci�c knowledge into AI algorithms 
can enhance the interpretability of these models, making them 
invaluable tools for material scientists. 

 In the years to come, the convergence of Vision 
Transformers and Material Science is set to revolutionize 
various industries. �e ability to expedite the material 
discovery, optimize material properties, and predict material 
behaviour with unprecedented accuracy will catalyze 
innovation and drive economic growth. Furthermore, the 
sustainable practices enabled by AI-driven material design will 
play a pivotal role in addressing global challenges such as 
climate change and resource scarcity. �e integration of Vision 
Transformers in Material Science marks a paradigm shi� in 
how materials are researched, designed, and utilized. �is 
research journey has illuminated the vast potential of AI in 
enhancing our understanding of materials and accelerating the 
development of groundbreaking technologies. As we move into 
this AI-driven future, collaboration, innovation, and a 
profound understanding of both material science and arti�cial 
intelligence will be the driving forces propelling us toward a 
new era of scienti�c discovery and technological advancement.
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Ceramic biomaterials:

Ceramic biomaterials, exempli�ed by hydroxyapatite and 
bioglass, serve applications in bone tissue engineering and 
dental implants. ViTs excel in analyzing high-resolution images 
of ceramic structures, competently detecting crystal 

Composite biomaterials:

Composite biomaterials merge 
two or more distinct materials to 
attain speci�c properties. ViTs 
are adept at processing images of 
composite microstructures, 
e�ectively distinguishing 
between individual phases and 
interfaces. �is ability 
streamlines the optimization of 
composite ratios, ensuring a 
harmonious balance of strength, 
�exibility, and bioactivity. 
Potential applications 
encompass the development of 
reinforced sca�olds for tissue 
engineering and composite 
coatings for medical devices 
(Figure 3) [20].

Nanomaterials:

Nanomaterials, exempli�ed by 
nanoparticles and 
nanocomposites, showcase 
unique properties due to their 
diminutive size. ViTs can 
analyze transmission electron 
microscopy (TEM) images of 
nanomaterials, enabling the 
quanti�cation of particle size, 
shape, and distribution. �is 
analysis is indispensable for 
designing nanoparticles for 
targeted drug delivery, where 
particle size directly in�uences 
cellular uptake and drug release 
kinetics [16,17].
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Vision Transformers in Nanomaterials
Nanomaterials, with their distinctive properties derived from 
their minuscule scale, have ushered in groundbreaking 
advancements across diverse �elds, including electronics, 
medicine, energy, and catalysis [56-58]. Understanding these 
materials at the nanoscale is vital to grasp their behaviour and 
unlock their full potential. Conventional methods such as 
electron microscopy and X-ray di�raction have been pivotal in 

this pursuit. However, the advent of arti�cial intelligence (AI) 
and machine learning, speci�cally Vision Transformers (ViTs), 
has transformed nanomaterials science [57,58]. Table 4 shows 
the roles and challenges of vision transformers in nanomaterial 
research.

Nanoparticles:

Nanoparticles, ranging from 1 to 100 nanometers, exhibit 
distinct optical, magnetic, and catalytic properties compared to 
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